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1 INTRODUCTIONThe visual appearan
e of obje
ts is a 
on
ern of
omputer vision as well as 
omputer graphi
s. Both�elds of resear
h utilize internal representations ofobje
ts. One main topi
 of 
omputer graphi
s is thegeneration of 3d models from real world obje
ts forgeometri
 modeling, one of the major problems in
omputer vision is the re
ognition of obje
ts from sin-gle views. The internal obje
t representations thathave to be a
quired 
an be 3d model-based or 2dview-based. Up to now one of the problems 
on-
erning obje
t a
quisition is its separation from thepro
essing of the a
quired data, espe
ially from thespe
i�
 goal of a future appli
ation. This often im-pli
ates that the a
quired data are either insuÆ
ientor redundant for the appli
ation. Thus, there is anin
reasing demand for learning methods whi
h al-low the extra
tion of only the relevant informationwith respe
t to a de�ned goal. Among the prin
iplesof learning agents to be striven for are the learningof goal-dire
ted behavior, adaptivity to the environ-ment, and as little supervision by the user as possible.In this arti
le we propose a learning s
heme whi
hfollows these pri
iples. An agent autonomouslyadapts to her environment resulting in a learned a
-tion pattern that depends on the environment andthe goal of the a
tion only.We implement these prin
iples 
onsidering thelearning of view-based obje
t representations as ex-ample. Our agent simulates a s
anner whi
h movesa 
amera around an obje
t. The a
tion pattern tobe learned is the s
an path on the view sphere whi
his optimal with respe
t to the obje
t and the goal ofthe data a
quisition. The learned s
an path allowsfor the generation of a sparse, view-based obje
t rep-resentation in form of some sele
ted key views of thepath. The goal of the agent is to �nd that s
an pathwhi
h best enables the view-based re
onstru
tion ofnon-a
quired views from key views of the s
an path.The only user intera
tion 
onsists in the de�nition ofthis goal in form of a reward signal whi
h guides thelearning pro
ess. The appropriate behavior emergesautonomously then by intera
tion of the agent (the

moving 
amera) with the environment (the obje
t).Thus, di�erent s
an paths would result for di�erentobje
t 
lasses and for di�erent goals of the data a
-quisition (su
h as learning 3d models versus 2d view-based representations).The 
ore of our appro
h is a reinfor
ement module.Its prin
iples are brie
y sket
hed. An agent inter-a
ts with the environment by per
eption and a
tion.In an intera
tion step the agent re
eives informationon the 
urrent state of the environment as input viaper
eption. A state is de�ned by the 
urrent 
ameraparameters and information on the obje
t learned sofar. Then the agent 
hooses an a
tion a

ording toa poli
y fun
tion, i.e., the 
amera is moved to a nextview and the representation learned up to this timeis updated. The a
tion is 
arried out and 
hanges thestate of the environment. The agent is able to adapther behavior dynami
ally to 
ertain 
onditions. Forthis purpose the agent re
eives dire
t feedba
k forthe last a
tion by a reward signal whi
h supports theintended goal (here the re
onstru
tion of unfamiliarviews). The behavior of the agent should maximizethe long term sum of the reward signals. Thus, theagent learns her behavior by systemati
 trial-and-error over several s
anning episodes.2 RELATED WORKRe
ently more attention is payed to the importan
eof joining obje
t learning and a
tion. In [1℄ a
tion-spe
i�
 movement patterns of obje
ts are statisti
allylearned while a
tions su
h as pushing are 
arried outon them. But the a
quisition phase (i.e., the learningor training) is still dis
onne
ted from the appli
ationwithout feedba
k between per
eption and a
tion.Another �eld of resear
h related to this work is de-noted by the term viewpoint planning. It des
ribesa bun
h of te
hniques used to determine viewpointdistributions of obje
ts or s
enes whi
h are optimalwith respe
t to the information ne
essary for a spe-
i�
 task. In 
omputer vision these te
hniques arenot utilized at the level of obje
t a
quisition up tonow, rather they are employed �rst on the level ofre
ognition [2℄.



The 
on
ept of key-frames is another issue relatedto the a
quisition of obje
ts. In [3℄ key-frames are
hosen from an image sequen
e to represent an ob-je
t, but still with a given s
an path and a givenstrategy for their 
hoi
e. Other systems exist whi
hare more adaptive. They try to adjust the s
an pathto the obje
t or the appli
ation [4, 5, 6, 7, 8℄, buthere the strategies for s
anning an obje
t or a s
eneare mostly given by the developer as well. Only re-
ently an e�ort is made to learn the strategies as well,for example with methods of reinfor
ement learning.But here again the autonomous emergen
e of strate-gies is explored not until the level of obje
t re
ogni-tion [9, 10, 11℄. To our knowledge no approa
h to ob-je
t a
quisition by a
tive learning has been proposedup to now. The system we des
ribe in this paperlearns a view-based obje
t representation adaptivelywithout a given strategy via reinfor
ement learning.Methods for the 
ontrol of reinfor
ement learning de-signs are summarized, e.g., in [12, 13, 14℄.3 COMPONENTS OF THE SYSTEMIn this se
tion we des
ribe the prepro
essing of thea
quired views, the 
al
ulation of 
orresponden
esbetween frames by tra
king lo
al feature des
riptors,the data stru
ture for the obje
t representation, andthe re
onstru
tion of unfamiliar views whi
h have notbeen s
anned. These are the basi
 
omponents of oursystem. The learning of a s
an strategy is treated inse
tion 4.3.1 Prepro
essing and View Repre-sentationThe results des
ribed in this arti
le have been ob-tained with a s
anning system whi
h is virtual only,i.e., whi
h is not implemented on a hardware s
anneryet. We simulate a s
anner whi
h rotates the 
am-era around the obje
t at a �xed distan
e orientedto the 
enter of the obje
t base. For that purposewe re
orded views of obje
ts in distan
es of 3:6Æ inboth, longitude and latitude dire
tion on the upperhemisphere of the obje
t, resulting in 2500 views per

obje
t (see �gure 3). Ea
h view is represented by agraph, whi
h 
overs the obje
t in the image. Thenodes of a graph are labeled with Gabor wavelet re-sponses, whi
h des
ribe the lo
al surroundings of thenode in the image. For the Gabor transform we usea set of wavelets with 8 dire
tions and 4 frequen-
ies. The graphs are generated automati
ally fromthe images: �rst, the obje
t is separated from theba
kground by a segmentation algorithm des
ribedin [15℄, whi
h is based on the gray level values of theimage. Then a grid graph (�gure 1) is put on theresulting obje
t segment.
Figure 1: Grid graph.3.2 Tra
king Lo
al Obje
t FeaturesCorresponding obje
t points between s
anned viewsare obtained by tra
king the nodes of a graph fromframe to frame. They are required later for the view-based re
onstru
tion of non-a
quired views by mor-phing. The information stored at a node in formof Gabor wavelet responses enables the node to betra
ked to the next frame [16℄. The grid graph shownin the left view of �gure 2 is tra
ked along the se-quen
e to the view shown on the right. The similar-

Figure 2: Tra
king of obje
t pointsity between two views 
an be expressed by the resultof a similarity fun
tion between two graphs, whi
h isbased on the Gabor wavelet responses [17℄.



3.3 Obje
t RepresentationAssume a given s
an path of an obje
t. To obtaina sparse, view-based obje
t representation, we sele
tkey views from this path and store either one origi-nal grid graph or one original and one tra
ked graphper key view. We start with the �rst view of thes
an path. This is the �rst key view K0. Its orig-inal grid graph GK0orig is in
orporated in the obje
trepresentation. Then it is tra
ked a

ording to se
-tion 3.2 along the s
an path until the similarity be-tween the tra
ked graph at the 
urrent view of thes
an path and GK0orig drops below a preset threshold.The tra
ked graph GK1tra
k for this se
ond key view K1is also stored in the obje
t representation. For K1 anew grid graph GK1orig is generated and in
orporatedinto the representation as se
ond graph for this viewas well. Then this graph is also tra
ked until the sim-ilarity to GK1orig drops again below the threshold, andso on. This means that for the �rst and the last keyview of the s
an path only one graph is stored (GK0origand GKNtra
k, respe
tively), whereas for ea
h other keyview Kj ; j = 1; : : : ; N�1 of the s
an path two graphsGKjtra
k and GKjorig are stored in the obje
t representa-tion. This ensures pie
ewise 
orresponden
es for lo-
al areas of the view hemisphere. The illustrationin �gure 3 shows sample views of two obje
ts and apossible s
an path with three key views.3.4 Re
onstru
tion of Non-A
quiredViewsThe re
onstru
tion of non-a
quired views from thekey views of a s
an path has two fun
tions. On theone hand, it serves as a test whether the relevant in-formation on the obje
t has been 
aptured after thes
an path has been learned. On the other hand, itis used for the 
al
ulation of the reward signal afterea
h step of a s
an episode. The 
orresponden
es pro-vided by the tra
king pro
edure (se
tion 3.2) enableus to apply a standard view morphing te
hnique de-s
ribed in [18℄. An unfamiliar view is morphed fromthose two 
onse
utive key views whi
h are 
losest toit. To 
ompare a morphed view to its original ver-sion an error ere
on 2 [0; 1℄ also des
ribed in [18℄ 
an

Figure 3: View hemisphere with key viewsbe de�ned. In the example illustrated in �gure 4 thenon-a
quired view (7; 11) is re
onstru
ted from thekey views (3; 7) and (14; 7). It 
an be 
ompared tothe original view (7; 11).

original  view (3, 7) original view (14, 7)

morphed view (7, 11) original view (7, 11)

Figure 4: Re
onstru
tion of non-a
quired views



4 LEARNING ACTION PATTERNSWe apply Q-learning in our simulations. It worksby estimating the values of state-a
tion pairs. TheQ-value is the expe
ted dis
ounted sum of futurepayo�s obtained by taking a parti
ular a
tion in a
urrent state and following an optimal poli
y there-after. On
e these values have been learned, the opti-mal a
tion from any state is the one with the highestQ-value. We apply Q-learning with a learning rate� = 1=3 and an �-greedy poli
y with � = 1=3, an-nealed by the fa
tor 1=1:000001. In the beginningthe agent 
hooses exploration, i.e., a random a
tion,in one third of all steps and exploitation, i.e., an a
-tion based on the learned information, in two thirdsof all steps. With ongoing pro
essing we slowly de-
rease the probability for exploration for the bene�tof exploitation. The Q-values are de�ned as follows:Q(st; at) =Q(st; at) + �(rt+1 +maxaQ(st+1; a)�Q(st; at))with st the state, at the a
tion, and rt+1 the reward atstep t. As we 
urrently store them in a table the num-ber of state-a
tion-pairs has to be reasonably small.The de�nition of the state as the 
urrent position ofthe 
amera would yield a suÆ
iently small numberof states. But this de�nition would not be e�e
tualenough for learning, be
ause information of the s
anhistory is lost. The s
an history 
ould be retained byde�ning a state of the environment by the 
ompletepath. This in turn would yield too many states to bestored in the Q-table (all possible paths). For thesereasons we de�ne a state as a ve
tor of �ve values.The �rst value en
odes the 
urrent position of the
amera, the remaining four values des
ribe the de-gree of unfamiliarity of the areas to the north, east,south, and west of the 
urrent position on the viewhemisphere, respe
tively. By this de�nition similars
an paths, whi
h provide almost the same informa-tion on the obje
t, are mapped to the same state. Inthe illustration in �gure 5 the hemisphere is quan-tized and proje
ted to a plane. The position in the
enter is the 
urrent position of the agent. For theareas to the north, east, south and west of the 
urrent

position the degrees of unfamiliarity de�ne the stateof the agent. Positions on the diagonals whi
h sep-arate the areas are assigned to both adja
ent areas.
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Figure 5: Hemisphere areas used for state de�nitionsWe 
al
ulate the degree of unfamiliarity of an areain the following way. To ea
h unfamiliar position ofan area we assign the distan
e from this unfamiliarposition to the next position that has already beens
anned. Then the value of an area is the sum of allvalues of unfamiliar positions in this area (�gure 6).The arrows depi
t the s
an paths. The numbers arevalues of single positions within either of the fourareas.
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1 1 1 1 1Figure 6: Examples for unfamiliarity 
al
ulationThe possible values of an area are quantized into�ve bins, 0 en
odes very familiar areas, 4 en
odes veryunfamiliar areas. For a further redu
tion of the num-ber of states we also quantize the original view hemi-sphere, resulting in a raster of 20 � 5 views. Thus,a state of the reinfor
ement learning module 
onsistsof six 
omponents: x-position on the hemisphere (20possible values), y-position (5 possible values), unfa-miliarity of the areas in the four dire
tions (5 possiblevalues ea
h), resulting in a total of 2000 states.



Possible a
tions are the movement of the 
amerain one of the four above mentioned dire
tions on thequantized view hemisphere.The reward signal rt+1 is 
al
ulated in the followingway. Before the 
hoi
e of the next a
tion the agentpredi
ts the view he would per
eive if he performedthe a
tion. The predi
tion is 
al
ulated a

ording tothe morphing te
hnique des
ribed in se
tion 3.4 fromthe last two key views she has experien
ed so far.After the predi
tion the a
tion is 
arried out. Thereward for this a
tion is higher for smaller similaritiesbetween the predi
ted and the a
tual view. More
on
rete, the reward is 
al
ulated a

ording to rt+1 =�(ere
on;t+1 � 1)16. The total return for one episodeis the sum of the rewards re
eived for ea
h step of theepisode.Ea
h episode starts at position (0; 0) on the viewhemisphere, whi
h 
an be regarded as 
anoni
al view.While the 
amera is moved one position on the
oarser raster of the quantized hemisphere the 
ur-rent graph is tra
ked a

ording to se
tion 3.2. Keyviews are determined along the way as des
ribed inse
tion 3.3 providing a s
an path with asso
iated keyviews for ea
h episode. An episode 
onsists of 32steps. This learning pro
ess is stopped when the s
anpath has stabilized. Finally, the quality of the learnedpath has to be assessed. To this end we randomly
hoose a set of 25 test views on the unquantizedhemisphere. These views are re
onstru
ted from thekey views of the learned path as des
ribed in se
-tion 3.4. Then a total re
onstru
tion error, whi
h isthe mean of the single re
onstru
tion errors ere
on ofall test views, gives information about the quality ofthe learned s
an path.5 RESULTSThe method des
ribed above has been 
arried outfor the \Tom" obje
t (�gure 3). The learned s
anpath stabilized after 2 million episodes and yieldeda signi�
antly lower total re
onstru
tion error thana
hieved with random s
an paths of equal length.The mean re
onstru
tion error for 100 random pathsis 9.2, whereas the error for the learned path is 5.8.

A typi
al random path with 32 steps is shown in �g-ure 7. The inset shows the view hemisphere seenfrom above with view (0; 0) at the bottom. Only thekey views of the path are displayed. Random pathshave been generated using the proposed method with� = 1.

Figure 7: Key views of a random s
an pathIn �gure 8 the key views of the stabilized, learneds
an path are depi
ted.

Figure 8: Key views of the learned s
an pathIn the diagram in �gure 9 the total returns ob-tained for one episode are plotted on a logarith-mi
 s
ale versus the number of episodes that havebeen 
arried out so far. The returns seem to bemonotonously in
reasing until the s
an path has sta-bilized between episodes 106 and 107.
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Figure 9: Total returns for s
an pathsThe s
an paths learned up to these episodes aredisplayed in �gure 10 illustrating the learning pro-
ess.

Episode 10 Episode 10 Episode 10

Episode 10Episode 10Episode 10 2 3 4

5 6 7Figure 10: S
an paths learned up to 
ertain episodesThe resulting path has an even shape, going aroundthe lower part of the view hemisphere from the frontto the ba
kside, turning up and moving ba
k to thefront in the upper part of the hemisphere. Thoseviews of the ba
kside of the obje
t that haven't been
overed by the learned path are rather similar to the

views where the agent turned up towards the top ofthe hemisphere. Thus, it seems to make sense notto in
orporate these redundant views into a sparseobje
t representation.We 
arried out experiments with an episode lengthof 36 steps as well. The shape of the resulting s
anpath for these experiments is similar to the one witha length of 32 steps with the ex
eption that it alter-nates its dire
tion on
e more in the top of the hemi-sphere. But for the epsiodes with 32 steps the dif-feren
e between learned and random paths in termsof the total re
onstru
tion error is more obvious thanfor the episodes with 36 steps.6 CONCLUSIONSWe have introdu
ed an a
tive vision system whi
hautomati
ally learns internal obje
t representationsfor de�ned purposes. By adaption to its environmentit develops goal-dire
ted behavior in the form of astrategy to s
an an obje
t in su
h a way that the re-
onstru
tion of non-a
quired obje
t views is possible.This results in an obje
t-spe
i�
 movement patternof the s
anner. Up to now we have demonstrated foronly one obje
t that the learned s
an strategy is moresuitable for the re
onstru
tion of unfamiliar views ofthe s
anned obje
t than any of the tested randoms
an paths. We will test our system with other ob-je
ts with di�erent shapes in the future and also hopeto learn 
hara
teristi
 s
an paths for di�erent obje
t
lasses.The system as it is des
ribed doesn't work in real-time. But we believe that the basi
 idea of the ap-proa
h will enable real-time appli
ations in the fu-ture. For that purpose we will, for example, repla
ethe table-based Q-learning by an appropriate fun
-tion approximation. (Then the restri
tion to pathsof a preset length will also be super
uous.) In addi-tion, we believe that on
e 
hara
teristi
 s
an strate-gies for di�erent obje
t 
lasses 
an be learned, theinspe
tion of obje
ts, e.g., for the purpose of re
og-nition will be possible in real-time. Currently we areworking on the transfer of our approa
h to a hard-ware system. We use an anthropomorphi
 robot with



a manipulator arm whi
h moves a 
amera in its grip-per around an obje
t pla
ed on a table. In addition,we investigate the in
uen
e of di�erent goals (su
h asthe a
quisition of a 3d model) on the resulting s
anstrategy. We believe that the proposed 
on
ept willresult in an intelligent s
anner whi
h allows a moreeÆ
ient a
quisition and storage of obje
ts. Possibleappli
ations are �nding 3d models in data bases andlearning, re
ognition, and grasping of obje
ts in thearea of servi
e roboti
s.A
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