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1 INTRODUCTIONThe visual appearane of objets is a onern ofomputer vision as well as omputer graphis. Both�elds of researh utilize internal representations ofobjets. One main topi of omputer graphis is thegeneration of 3d models from real world objets forgeometri modeling, one of the major problems inomputer vision is the reognition of objets from sin-gle views. The internal objet representations thathave to be aquired an be 3d model-based or 2dview-based. Up to now one of the problems on-erning objet aquisition is its separation from theproessing of the aquired data, espeially from thespei� goal of a future appliation. This often im-pliates that the aquired data are either insuÆientor redundant for the appliation. Thus, there is aninreasing demand for learning methods whih al-low the extration of only the relevant informationwith respet to a de�ned goal. Among the priniplesof learning agents to be striven for are the learningof goal-direted behavior, adaptivity to the environ-ment, and as little supervision by the user as possible.In this artile we propose a learning sheme whihfollows these priiples. An agent autonomouslyadapts to her environment resulting in a learned a-tion pattern that depends on the environment andthe goal of the ation only.We implement these priniples onsidering thelearning of view-based objet representations as ex-ample. Our agent simulates a sanner whih movesa amera around an objet. The ation pattern tobe learned is the san path on the view sphere whihis optimal with respet to the objet and the goal ofthe data aquisition. The learned san path allowsfor the generation of a sparse, view-based objet rep-resentation in form of some seleted key views of thepath. The goal of the agent is to �nd that san pathwhih best enables the view-based reonstrution ofnon-aquired views from key views of the san path.The only user interation onsists in the de�nition ofthis goal in form of a reward signal whih guides thelearning proess. The appropriate behavior emergesautonomously then by interation of the agent (the

moving amera) with the environment (the objet).Thus, di�erent san paths would result for di�erentobjet lasses and for di�erent goals of the data a-quisition (suh as learning 3d models versus 2d view-based representations).The ore of our approh is a reinforement module.Its priniples are briey skethed. An agent inter-ats with the environment by pereption and ation.In an interation step the agent reeives informationon the urrent state of the environment as input viapereption. A state is de�ned by the urrent ameraparameters and information on the objet learned sofar. Then the agent hooses an ation aording toa poliy funtion, i.e., the amera is moved to a nextview and the representation learned up to this timeis updated. The ation is arried out and hanges thestate of the environment. The agent is able to adapther behavior dynamially to ertain onditions. Forthis purpose the agent reeives diret feedbak forthe last ation by a reward signal whih supports theintended goal (here the reonstrution of unfamiliarviews). The behavior of the agent should maximizethe long term sum of the reward signals. Thus, theagent learns her behavior by systemati trial-and-error over several sanning episodes.2 RELATED WORKReently more attention is payed to the importaneof joining objet learning and ation. In [1℄ ation-spei� movement patterns of objets are statistiallylearned while ations suh as pushing are arried outon them. But the aquisition phase (i.e., the learningor training) is still disonneted from the appliationwithout feedbak between pereption and ation.Another �eld of researh related to this work is de-noted by the term viewpoint planning. It desribesa bunh of tehniques used to determine viewpointdistributions of objets or senes whih are optimalwith respet to the information neessary for a spe-i� task. In omputer vision these tehniques arenot utilized at the level of objet aquisition up tonow, rather they are employed �rst on the level ofreognition [2℄.



The onept of key-frames is another issue relatedto the aquisition of objets. In [3℄ key-frames arehosen from an image sequene to represent an ob-jet, but still with a given san path and a givenstrategy for their hoie. Other systems exist whihare more adaptive. They try to adjust the san pathto the objet or the appliation [4, 5, 6, 7, 8℄, buthere the strategies for sanning an objet or a seneare mostly given by the developer as well. Only re-ently an e�ort is made to learn the strategies as well,for example with methods of reinforement learning.But here again the autonomous emergene of strate-gies is explored not until the level of objet reogni-tion [9, 10, 11℄. To our knowledge no approah to ob-jet aquisition by ative learning has been proposedup to now. The system we desribe in this paperlearns a view-based objet representation adaptivelywithout a given strategy via reinforement learning.Methods for the ontrol of reinforement learning de-signs are summarized, e.g., in [12, 13, 14℄.3 COMPONENTS OF THE SYSTEMIn this setion we desribe the preproessing of theaquired views, the alulation of orrespondenesbetween frames by traking loal feature desriptors,the data struture for the objet representation, andthe reonstrution of unfamiliar views whih have notbeen sanned. These are the basi omponents of oursystem. The learning of a san strategy is treated insetion 4.3.1 Preproessing and View Repre-sentationThe results desribed in this artile have been ob-tained with a sanning system whih is virtual only,i.e., whih is not implemented on a hardware sanneryet. We simulate a sanner whih rotates the am-era around the objet at a �xed distane orientedto the enter of the objet base. For that purposewe reorded views of objets in distanes of 3:6Æ inboth, longitude and latitude diretion on the upperhemisphere of the objet, resulting in 2500 views per

objet (see �gure 3). Eah view is represented by agraph, whih overs the objet in the image. Thenodes of a graph are labeled with Gabor wavelet re-sponses, whih desribe the loal surroundings of thenode in the image. For the Gabor transform we usea set of wavelets with 8 diretions and 4 frequen-ies. The graphs are generated automatially fromthe images: �rst, the objet is separated from thebakground by a segmentation algorithm desribedin [15℄, whih is based on the gray level values of theimage. Then a grid graph (�gure 1) is put on theresulting objet segment.
Figure 1: Grid graph.3.2 Traking Loal Objet FeaturesCorresponding objet points between sanned viewsare obtained by traking the nodes of a graph fromframe to frame. They are required later for the view-based reonstrution of non-aquired views by mor-phing. The information stored at a node in formof Gabor wavelet responses enables the node to betraked to the next frame [16℄. The grid graph shownin the left view of �gure 2 is traked along the se-quene to the view shown on the right. The similar-

Figure 2: Traking of objet pointsity between two views an be expressed by the resultof a similarity funtion between two graphs, whih isbased on the Gabor wavelet responses [17℄.



3.3 Objet RepresentationAssume a given san path of an objet. To obtaina sparse, view-based objet representation, we seletkey views from this path and store either one origi-nal grid graph or one original and one traked graphper key view. We start with the �rst view of thesan path. This is the �rst key view K0. Its orig-inal grid graph GK0orig is inorporated in the objetrepresentation. Then it is traked aording to se-tion 3.2 along the san path until the similarity be-tween the traked graph at the urrent view of thesan path and GK0orig drops below a preset threshold.The traked graph GK1trak for this seond key view K1is also stored in the objet representation. For K1 anew grid graph GK1orig is generated and inorporatedinto the representation as seond graph for this viewas well. Then this graph is also traked until the sim-ilarity to GK1orig drops again below the threshold, andso on. This means that for the �rst and the last keyview of the san path only one graph is stored (GK0origand GKNtrak, respetively), whereas for eah other keyview Kj ; j = 1; : : : ; N�1 of the san path two graphsGKjtrak and GKjorig are stored in the objet representa-tion. This ensures pieewise orrespondenes for lo-al areas of the view hemisphere. The illustrationin �gure 3 shows sample views of two objets and apossible san path with three key views.3.4 Reonstrution of Non-AquiredViewsThe reonstrution of non-aquired views from thekey views of a san path has two funtions. On theone hand, it serves as a test whether the relevant in-formation on the objet has been aptured after thesan path has been learned. On the other hand, itis used for the alulation of the reward signal aftereah step of a san episode. The orrespondenes pro-vided by the traking proedure (setion 3.2) enableus to apply a standard view morphing tehnique de-sribed in [18℄. An unfamiliar view is morphed fromthose two onseutive key views whih are losest toit. To ompare a morphed view to its original ver-sion an error ereon 2 [0; 1℄ also desribed in [18℄ an

Figure 3: View hemisphere with key viewsbe de�ned. In the example illustrated in �gure 4 thenon-aquired view (7; 11) is reonstruted from thekey views (3; 7) and (14; 7). It an be ompared tothe original view (7; 11).

original  view (3, 7) original view (14, 7)

morphed view (7, 11) original view (7, 11)

Figure 4: Reonstrution of non-aquired views



4 LEARNING ACTION PATTERNSWe apply Q-learning in our simulations. It worksby estimating the values of state-ation pairs. TheQ-value is the expeted disounted sum of futurepayo�s obtained by taking a partiular ation in aurrent state and following an optimal poliy there-after. One these values have been learned, the opti-mal ation from any state is the one with the highestQ-value. We apply Q-learning with a learning rate� = 1=3 and an �-greedy poliy with � = 1=3, an-nealed by the fator 1=1:000001. In the beginningthe agent hooses exploration, i.e., a random ation,in one third of all steps and exploitation, i.e., an a-tion based on the learned information, in two thirdsof all steps. With ongoing proessing we slowly de-rease the probability for exploration for the bene�tof exploitation. The Q-values are de�ned as follows:Q(st; at) =Q(st; at) + �(rt+1 +maxaQ(st+1; a)�Q(st; at))with st the state, at the ation, and rt+1 the reward atstep t. As we urrently store them in a table the num-ber of state-ation-pairs has to be reasonably small.The de�nition of the state as the urrent position ofthe amera would yield a suÆiently small numberof states. But this de�nition would not be e�etualenough for learning, beause information of the sanhistory is lost. The san history ould be retained byde�ning a state of the environment by the ompletepath. This in turn would yield too many states to bestored in the Q-table (all possible paths). For thesereasons we de�ne a state as a vetor of �ve values.The �rst value enodes the urrent position of theamera, the remaining four values desribe the de-gree of unfamiliarity of the areas to the north, east,south, and west of the urrent position on the viewhemisphere, respetively. By this de�nition similarsan paths, whih provide almost the same informa-tion on the objet, are mapped to the same state. Inthe illustration in �gure 5 the hemisphere is quan-tized and projeted to a plane. The position in theenter is the urrent position of the agent. For theareas to the north, east, south and west of the urrent

position the degrees of unfamiliarity de�ne the stateof the agent. Positions on the diagonals whih sep-arate the areas are assigned to both adjaent areas.
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Figure 5: Hemisphere areas used for state de�nitionsWe alulate the degree of unfamiliarity of an areain the following way. To eah unfamiliar position ofan area we assign the distane from this unfamiliarposition to the next position that has already beensanned. Then the value of an area is the sum of allvalues of unfamiliar positions in this area (�gure 6).The arrows depit the san paths. The numbers arevalues of single positions within either of the fourareas.
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1 1 1 1 1Figure 6: Examples for unfamiliarity alulationThe possible values of an area are quantized into�ve bins, 0 enodes very familiar areas, 4 enodes veryunfamiliar areas. For a further redution of the num-ber of states we also quantize the original view hemi-sphere, resulting in a raster of 20 � 5 views. Thus,a state of the reinforement learning module onsistsof six omponents: x-position on the hemisphere (20possible values), y-position (5 possible values), unfa-miliarity of the areas in the four diretions (5 possiblevalues eah), resulting in a total of 2000 states.



Possible ations are the movement of the amerain one of the four above mentioned diretions on thequantized view hemisphere.The reward signal rt+1 is alulated in the followingway. Before the hoie of the next ation the agentpredits the view he would pereive if he performedthe ation. The predition is alulated aording tothe morphing tehnique desribed in setion 3.4 fromthe last two key views she has experiened so far.After the predition the ation is arried out. Thereward for this ation is higher for smaller similaritiesbetween the predited and the atual view. Moreonrete, the reward is alulated aording to rt+1 =�(ereon;t+1 � 1)16. The total return for one episodeis the sum of the rewards reeived for eah step of theepisode.Eah episode starts at position (0; 0) on the viewhemisphere, whih an be regarded as anonial view.While the amera is moved one position on theoarser raster of the quantized hemisphere the ur-rent graph is traked aording to setion 3.2. Keyviews are determined along the way as desribed insetion 3.3 providing a san path with assoiated keyviews for eah episode. An episode onsists of 32steps. This learning proess is stopped when the sanpath has stabilized. Finally, the quality of the learnedpath has to be assessed. To this end we randomlyhoose a set of 25 test views on the unquantizedhemisphere. These views are reonstruted from thekey views of the learned path as desribed in se-tion 3.4. Then a total reonstrution error, whih isthe mean of the single reonstrution errors ereon ofall test views, gives information about the quality ofthe learned san path.5 RESULTSThe method desribed above has been arried outfor the \Tom" objet (�gure 3). The learned sanpath stabilized after 2 million episodes and yieldeda signi�antly lower total reonstrution error thanahieved with random san paths of equal length.The mean reonstrution error for 100 random pathsis 9.2, whereas the error for the learned path is 5.8.

A typial random path with 32 steps is shown in �g-ure 7. The inset shows the view hemisphere seenfrom above with view (0; 0) at the bottom. Only thekey views of the path are displayed. Random pathshave been generated using the proposed method with� = 1.

Figure 7: Key views of a random san pathIn �gure 8 the key views of the stabilized, learnedsan path are depited.

Figure 8: Key views of the learned san pathIn the diagram in �gure 9 the total returns ob-tained for one episode are plotted on a logarith-mi sale versus the number of episodes that havebeen arried out so far. The returns seem to bemonotonously inreasing until the san path has sta-bilized between episodes 106 and 107.
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Figure 9: Total returns for san pathsThe san paths learned up to these episodes aredisplayed in �gure 10 illustrating the learning pro-ess.

Episode 10 Episode 10 Episode 10

Episode 10Episode 10Episode 10 2 3 4

5 6 7Figure 10: San paths learned up to ertain episodesThe resulting path has an even shape, going aroundthe lower part of the view hemisphere from the frontto the bakside, turning up and moving bak to thefront in the upper part of the hemisphere. Thoseviews of the bakside of the objet that haven't beenovered by the learned path are rather similar to the

views where the agent turned up towards the top ofthe hemisphere. Thus, it seems to make sense notto inorporate these redundant views into a sparseobjet representation.We arried out experiments with an episode lengthof 36 steps as well. The shape of the resulting sanpath for these experiments is similar to the one witha length of 32 steps with the exeption that it alter-nates its diretion one more in the top of the hemi-sphere. But for the epsiodes with 32 steps the dif-ferene between learned and random paths in termsof the total reonstrution error is more obvious thanfor the episodes with 36 steps.6 CONCLUSIONSWe have introdued an ative vision system whihautomatially learns internal objet representationsfor de�ned purposes. By adaption to its environmentit develops goal-direted behavior in the form of astrategy to san an objet in suh a way that the re-onstrution of non-aquired objet views is possible.This results in an objet-spei� movement patternof the sanner. Up to now we have demonstrated foronly one objet that the learned san strategy is moresuitable for the reonstrution of unfamiliar views ofthe sanned objet than any of the tested randomsan paths. We will test our system with other ob-jets with di�erent shapes in the future and also hopeto learn harateristi san paths for di�erent objetlasses.The system as it is desribed doesn't work in real-time. But we believe that the basi idea of the ap-proah will enable real-time appliations in the fu-ture. For that purpose we will, for example, replaethe table-based Q-learning by an appropriate fun-tion approximation. (Then the restrition to pathsof a preset length will also be superuous.) In addi-tion, we believe that one harateristi san strate-gies for di�erent objet lasses an be learned, theinspetion of objets, e.g., for the purpose of reog-nition will be possible in real-time. Currently we areworking on the transfer of our approah to a hard-ware system. We use an anthropomorphi robot with
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